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PROBLEM OF FAST ACTION IN A PLANE

A. S. Shmyrov

1. Statement of the Problem of Optimal Speed' of /57

Response

Let the point (xl, x2 ) of plane R2(correspond to the state

of some system, and the motion of the system be described by the

equations

X,=f (x, x2, a),

x 2=f, (x1 , x,, U),

(1.1)

where (*) designates the differentiation by argument t, u--controls

acquiring the value from some subset U of Euclidian space. The

functions fl and f 2 are assumed continuous together with the first

partial derivatives with respect to the variables x1.and x 2. We

must select such piecewise continuous vector-fuhction u(t) whereby

the system transfers from the initial state to the origin of the

coordinates with the least increment in the argument. Since in

practice, the argument most often is time, then the formulated pro-

blem has received the name of a problem of optimal speed of re-

sponse.

Equations (1.1) for each point (x1 , x2 ) assign the mapping of

the set U on the plane. Let us designate by V(xl, x2 ) the image

of the set U in such mapping. The problem of optimal speed of re-

sponse can be stated differently. Namely, to put in correspondence

to each point (x1 , x 2 ) a set V(x 1, x2 ). In this case, we will not

be seeking a control function, but the optimal selection of velo-

city from the set V. Henceforth, both methods of stating the prob-

lem will be used.
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Let us examine, together with the initial system with equa- /58

tions (1.1), another system with equations defining at each point

(x1' x2 ) a set V1(x1 , x2). Let us plot the limitation in phase

coordinates: (x1 , x2 ) * X, where the set X is previously selected.

Now let for every (x1 , x2) X

V(x, x,) C'V (xI, x2. * ,(1.2)

Then, if some trajectory is realized by both systems with an identi-

6a- ? increase in the argument and is optimal for the second: system,

it is also optimal for the initial system.

Actually, condition (1.2) signifies that the second system in

any direction can move with less velocity than the initial, whence

follows the assertion.

2. Definition of an Auxiliary System

Let us consider the problem of speed of response for a system

whose set V for every point (x1 , x 2 ) ( X is a band contained be-

tween two parallel straight lines, and point (0, 0) is an internal

point V. Therefore, for this system at each point of the set X

there is a direction in which it can move without expenditure of

the argument. In other words, after defining the system, we de-

fined the field of directions possessing this property.

Now let m be an integral curve of this field of directions

and let m divide the set X into two subsets, so that it is impos-

sible to go from one to another continuously without intersecting

m. Then we can predict a priori on which of the straight lines

defining the set V lies the optimal value of velocity for points

on curve m.

Actually, since (0, 0) is the internal point of the band,

.2. (



then by selecting the value of velocity on one of the straight lines,

we enter that part of set X to which belongs the ultimate pO3Qnt.

The selection of velocity on another straight line corresponds to

a departure from curve m into an area to which the ultimate point

does not belong. The selection of velocity in the second iistance

can not be optimal, since for us to enter into the finite point,

we still have to intersect curve m, expending on this action some

increase in the argument, whereas motion along curve m , occurs with-

out loss of argument.

So, this system is tantamount to a system whose set V is a

straight line p: P1 (xl, x2 )x1 + P 2 (xl, x 2 )x 2 = 1. This fact,)will

be used later to fulfill condition (1.2).

Let functions P1 and P2 be piecewise continuous together with /59

their first partial derivatives and AP 1, AP 2 --their increments in

transition through the curve of discontinuity. Then, if every-

where beside the. curves of discontinuity is fulfilled the relation

OP2  IP
Ox1  ' _ (2.1)

and on the curves of discontinuity is a relation

AP d + AP2 dx2 =O, [ (2.2)

where dxl, dx 2 define the direction tangent to the curve of dis-

continuity, the problem of optimization for this system is degen-

erated. Namely any trajeetorywhich can be realized is optimal.

Let us now return to the initial problem. Let each point of

X be placed in correspondence with a set V and solve the problem

of speed of response. Let us assume that we were, able to construct

a degenerate system (i.e., a system for which are fulfilled con-
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ditions (2.1) and (2..2) and the condition on curve m) and such

that the straight line p is a line of support of the convex en-

velope V. This system will be called an auxiliary. It is now

not difficult to make an optimal selection of velocity: the opti-

malvalues of velocity belong to the intersection of straight line

p and convex envelope V.

3. Example for Construction of Auxiliary System

Let us consider the problem of speed of response for a system

with controls

xg a
(3.1)

x 2 -- U
Y2 (xI, x 2)

where u [0, 1] and 1,' p2 > 0. The set V for this system is a

fragment whose ends lie on half-lines x2 
= 0, xl > 0 and xl = 0,

x2 > 0. This system can be translated to the origin of the co-

ordinates only from the third quadrant of the plane; consequently,

the auxiliary system must be constructed only in that quadrant.

Let us note that the construction of an auxiliary system is equi-

valent (in this case) to the construction-of a synthesis of opti-

mal control, i.e., to the definition of control as a function of

phase coordinates.

Let us construct the auxiliary system in the small neighbor-

hood of the origin of the coordinates, more precisely on the inter-

section of the ' neighborhood and the third quadrant of the plane;

we will then expand the structure to the remaining area.

Let us consider the function w(xl, x2) - x x2 By de- /60
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finition, this function is continuous. Let (0, 0) < 0. Let us

then assume that

P2= 2 - (y, x2) dy.
0

.(3.2)

We will show that the system defined by formulas (3.2) is auxi-

liary in some small neighborhood of the origin of the coordinates.

Actually, fun tions P1 and P2 satisfy conditions (2.1) and

(2.2), and due to the continuity of function w there exists a

neighborhood in which P2 < )2; consequently, condition (1.2) is

also fulfilled. Curves m are defined by the equation

P1 dx,+P2 dx 2 =O, j (3.3)

whence is verified the condition imposed on m and line p.

After constructing the auxiliary system, it is easy to define

the control as a function of the variables xl and x2. Namely u = i,

if x 2 < 0, and u = 0 if x 2 .= 0.

Let w(O, 0) > 0. Then let us assume that

Pi i+ TOw(x 1 , y)dy,

P = 2. (3 .4)

By applying reasoning analogous to the preceeding, it is easy

to show that functions P1 and P2 define the auxiliary system. The

optimal control is defifd as follows: u = 0 if x2 < 0, u = 1 if

x2 = 0.

Now let w(0, 0) = 0. Construction of the auxiliary system
5



depends on which set of points defines in the neighborhood of the

origin of the coordinates the equation (x1, x2 ) = 0. The con-

tinuity of function w yields, in this case, insufficient informa-

tion on this set. Thus, we will impose additional restrictions on

function w.

Let curves l.(,i = 1, ..., k), intersecting only at the origin
1

of the coordinates, cut across neighborhood 6 into sectors ri .

Sector r. is bounded by curves 1. and 1.ii + sector r1 is bounded

bV stright oline xl = 0 and curve 11; and sector rk + 1--by curve

1k and straight line x2 = 0. Curves Ii can be given with the aid

of equations xl = i(x 2 ) or x 2 = Xi(xl), where Vi and Xi are con-

tinuous and monotonous functions, defined for sufficiently small

values of the argument; and 'k >'k-l > .. '. and Xk < Xk-l <"
<X.1

We will consider that we can always construct a breakdown of

neighborhood 6, which has the aforementioned properties so that

in each sector ri.,fuictibn w is either non-positive or non-nega- /61

tive, and in transition through curve 1ii the function would change

sign.

Let us construct an auxiliary system based on this supposi-

tion. Let us introduce into our discussion a set of a finite num-

ber of curves n. passing through the origin of the coordinates,

after defining them as follows. Curve ni coincides with curve 1ii

if in transition from sector r. to sector ri+ 1 function w changes
1

sign plus to minus. If the sign changes in the opposite direction,

curve n. is defined by the equation

S (y, x) dy dx(x, y) dy dx (3.5)

Curves ni define a new subdivision of the neighborhood into sec-
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tors s.. Sector sI is bounded by straight line xl = 0 and curve

n ; sectors s. (i / l)--by curves n. and n. ; sector l by curve
1 1 n. a + Sk+l

nk and straight line x2 = 0.

Now let (Xl, x2 ) (i i). If curve ni coincides with

curve i., then we assume that

P2 Y2_, f( y, x,) dy. (3.6)

If curve ni, however, does not coincide with curve li, then accord-

ingly curve ni+ I coincides with curve li+. Then we will assume
+1+1

that

P=, '1+ S , (xli y) dy,

P2 X 2. +

(3.7)

Let (Xl, x 2 ) {- sI . If n1 coincides with 11, we assume that

=+ (x, y)dy. (3.8)

2 ( 2,

and if the condition is not fulfilled, then

(3.9)
P2 2 -S W(Y, X)jy (3.9)0

Let (x1 , x2 ) { Sk+ .l If nk coincides with 1 k, then

P- c w+(xj,y)dy (3.10)

P2 -cP 2, 7



in the opposite situation 7e find that /62

"- ~Y' .Ad Cv\. , (3.11)

After applying notions analogous to the case w(O, 0) < 0, it is

not difficult to convince ourselves that formulas (3.6)-(3.11)

define the auxiliary system.

Therefore, after imposing the restriction on function w, we

were able to solve the problem in the neighborhood of the origin

of the coordinates. Let us now try to expand the found construc-

tion to a wider area. Let us note that if the system is defined

in the form

(3.12)

or as

(3.13)

where gl and g2 afe differentiable functions, then condition (2.1)

is fulfilled. Accordingly, it remains to select such functions

gl and g 2 and such curves of discontinuity of functions P1 and P2
which would enable conditions (1.2) and (2.2) to be fulfilled.

Reversing curves will be called those curves given by the

equations xl = g2 (x2 ) and 2 = gl(x 1 ). In the reversing curves

the relations are fulfilled as follows

S(3.14)
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with whose aid we can construct these curves. The construction

begihs-themoment when condition (1.2) is threatened by nonfulfill-

ment.

The curves of.discontinuity are constructed with the aid of

relation (2.2) and serve to define functions P and P2 unequivocal-
r 1

ly.

4. More General Case of Problem of Speed of

Response

Let us consider the problem of speed of response for a system

which has a set of V that is a convex polygon containing a zero

point. Let d be the number of polygon peaks and let this number

not change in the neighborhood of the origin of the ,copdinaTe s

Considering the control point a fixed peak of the polygon, let

us construct d curvesvof q. which cut the neighborhood into d sec-

tors. In each sector we will construct an auxiliary system, tak- /63

ing the corresponding side of the polygon as the set of V. This

problem can be reduced to problem #3 with the aid of the appro-

priate transformation of coordinates. It turns out that the

auxiliary systems constructed independently in each sector define

the total auxiliary system for the problem of this section.

In reality, due to the convexity of the polygon, condition

(1.2) is fulfilled. Curves qj are curves of discontinuity, but

they satisfy condition (2.2). Within the sectors, conditions

(2.1) and (2.2) are fulfilled from the construction.

In expanding the construction to a wider area, we must

keep to the same rules as in section 3.

Let us note in concluding that there is no theoretical dif-
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ficulty in constructing an auxiliary system, if the functions de-

fining the set V are only piecewise smooth with respect to the

phase coordinates.
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